held together by the Cl^{-}ions. The structure determination shows that the range of interaction extends only to next-nearest neighbours. The more bulky ClO_{4}^{-} ions in the ordered structure lead to an entirely different hydrogen-bonded structure. $\mathrm{O}(11)$ and $\mathrm{O}(2)$ both accept two hydrogen bonds each, with $\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ angles between 161 and 166°, whereas $O(3)$ has a close contact of $2.46 \AA$ with $\mathrm{H}(1)$, the angle $\mathrm{C}(2)-\mathrm{H}(1) \cdots \mathrm{O}$ (3) being 142°.

We thank Professor G. Schwarzenbach, Zürich, for the chemical substances, and Professor R. Roulet, Lausanne, for his help in obtaining single crystals.

The work was supported by the Swiss National Science Foundation, project No. 2.150-0.74.

References

Creitz, T. C., Gsell, R. \& Wampler, D. L. (1969). Chem. Commun. pp. 1371-1372.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Dornberger-Schiff, K. (1966). Lehrgang über $O D$ Strukturen. Berlin: Akademie-Verlag.

Ernst, R. (1977). Acta Cryst. B33, 237-240.
Ernst, R. \& Cagle, F. W. (1977). Acta Cryst. B33, 235237.

Holian, B. L. \& Marsh, R. E. (1970). Acta Cryst. B26, 1049-1058.
Jagodzinski, H. (1949). Acta Cryst. 2, 201-207.
Lewis, R. M., Nancollas, G. H. \& Coppens, P. (1972). Inorg. Chem. 11, 1371-1375.
Lis, T., Matuszewski, J. \& Jeżowska-Trzebiatowska, B. (1977). Acta Cryst. B33, 1943-1946.

Mathew, M. \& Kunchur, N. R. (1970). Acta Cryst. B26, 2054-2062.
Méring, J. (1949). Acta Cryst. 2, 371-377.
Niggli, A. (1964). Adv. Struct. Res. Diffr. Methods, 1, 199221.

Pinkerton, A. A. \& Schwarzenbach, D. (1977). Collect. Abstr. 4th Eur. Crystallogr. Meet. PII. 126.
Schwarzenbach, D. (1969). Z. Kristallogr. 128, 97-114.
Schwarzenbach, D. (1977). Collect. Abstr. 4th Eur. Crystallogr. Meet. PI. 20.
Schwarzenbach, G. \& Schwarzenbach, D. (1977). J. Indian Chem. Soc. 54, 23-24.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

XRAY system (1972). Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland. Implemented and extended by D. Schwarzenbach.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

The Crystal and Molecular Structure of Tetrachloroaqua[2,4,6-tris(2'-pyridyl)-1,3,5-triazine]dicobalt(II) Monohydrate

By G. A. Barclay, R. S. Vagg and E. C. Watton
School of Chemistry, Macquarie University, North Ryde, NSW 2113, Australia

(Received 17 November 1977; accepted 17 December 1977)
$\left[\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Co}_{2} \mathrm{Cl}_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ is monoclinic, space group $P 2_{1} / a$, with $a=26.77$ (7), $b=10.88$ (3), $c=$ 8.63 (2) $\AA, \beta=99.2(2)^{\circ}, Z=4$. The structure was refined to $R=0.108$ for 708 visually estimated reflexions. The ligand functions primarily as tridentate and monodentate to the two Co atoms. $\mathrm{Co}(1)$ is at the centre of a distorted octahedron of two Cl atoms $[\mathrm{Co}-\mathrm{Cl} 2.23$ (1), 2.55 (1) \AA], one water molecule $[\mathrm{Co}-\mathrm{O}$ $2 \cdot 19$ (3) \AA] and three N atoms of the ligand [mean $\mathrm{Co}-\mathrm{N} 2.07$ (3) \AA]. $\mathrm{Co}(2)$ is surrounded by three Cl atoms [mean $\mathrm{Co}-\mathrm{Cl} 2.22$ (1) \AA] and one pyridyl N atom [$\mathrm{Co}-\mathrm{N} 1.99$ (3) \AA] forming a distorted tetrahedron. A Cl atom bridges $\mathrm{Co}(1)$ and $\mathrm{Co}(2)$ of adjacent molecules to form molecular chains parallel to [010]. Severe distortions in the ligand molecule are apparent. The uncoordinated water molecule is associated with the coordinated water, two Cl atoms and the s-triazine ring, which shows distortion to a chair conformation.

Introduction

2,4,6-Tris(2'-pyridyl)-1,3,5-triazine (tpt) has been shown to function primarily as a tridentate ligand with a variety of transition-metal salts (Barclay, Vagg \& Watton, 1977a). From non-aqueous media dimeric
species of general formula $M_{2} X_{4}$ tpt. $n \mathrm{H}_{2} \mathrm{O}$ (where $M=$ Ni or $\mathrm{Co} ; X=\mathrm{Cl}$ or Br) have been isolated where the ligand may be acting simultaneously as both tridentate and bidentate (Vagg, Warrener \& Watton, 1967, 1969). We have reported the crystal structures of a bivalent Ni complex (Barclay, Vagg \& Watton, 1977a)
and a pentachloromanganate salt (Barclay, Vagg \& Watton, 1977b) of tpt. We report here the structure of $\mathrm{Co}_{2} \mathrm{Cl}_{4} \mathrm{tpt} .2 \mathrm{H}_{2} \mathrm{O}$.

Experimental

The complex was obtained as dark-green plates from the reaction of tpt with excess $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in hot ethanol/acetone. The product was found to be very unstable, absorbing moisture from the atmosphere in a short time and changing to orange/red with simultaneous loss of crystalline properties. Mounted unprotected on a goniometer head the crystals showed decomposition within 30 min , which could not be arrested by Lindemann-glass capillaries or by a lacquer coating. However, when sealed under a dry gelatin capsule in the presence of several other crystals and one or two pieces of silica gel the compound remains stable for several hours.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Cl}_{4} \mathrm{Co}_{2}, M_{r}=608 \cdot 0$, monoclinic, $a=$ 26.77 (7), $b=10.88$ (3), $c=8.63$ (2) $\AA, \beta=$ 99.2 (2) ${ }^{\circ}, U=2481.2 \AA^{3}, D_{m}=1.61$ (by flotation), D_{c} $=1.628 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1216, \mu\left(\mathrm{Cu} K_{\mathrm{r}}\right)=15.0$ cm^{-1}. Systematic absences: $0 k 0$ when $k=2 n+1, h 0 l$ when $h=2 n+1$; space group $P 2_{1} / a$.

Cell parameters were determined with several crystals from rotation photographs with unfiltered Cu radiation. One crystal only, $0.05 \times 0.5 \times 0.2 \mathrm{~mm}$, mounted as described above about [010], was found to be stable for $8-9$ days before significant decomposition occurred. During this period 708 non-zero reflexions were recorded on layers $h 0-6 l$ by the equi-inclination Weissenberg method with unfiltered Cu radiation. Intensities were measured visually. They were corrected for Lorentz-polarization and absorption (Coppens, Leiserowitz \& Rabinovich, 1965) effects but not for extinction, and initially were scaled according to exposure time.

Scattering factors were taken from International Tables for X-ray Crystallography (1962). Initial refinement was carried out on an IBM 360/50 computer with ORFLS (Busing, Martin \& Levy, 1962), and later on a Univac 1106 computer with programs written by F. S. Stephens.

Structure determination

The structure was solved by the heavy-atom method. Isotropic refinement was by full-matrix least-squares calculations, in which the function minimized was $\sum w \Delta^{2}$, and with unit weights. Initially an overall scale factor and positional and individual isotropic thermal
parameters were varied; in the latter stages of isotropic refinement a scale factor for each level was varied.

H atom positions were calculated for the three pyridyl rings but were not refined. Finally, anisotropic thermal parameters were used for the Co and Cl atoms together with an overall scale factor and a weighting scheme, $w=\left(62.5-0.10\left|F_{o}\right|+0.013\left|F_{o}\right|^{2}\right)^{-1}$. Reflexions for which $\left|F_{c}\right|<0.33\left|F_{o}\right|$ were omitted from the refinement, which was terminated when the maximum shift in any parameter was <0.1б. 704 reflexions were included in the final cycle. A final difference synthesis showed maximum positive electron densities of $0.9 \mathrm{e} \AA^{-3}$ near the heavy atoms. The final R

Table 1. Final atomic coordinates (fractional, $\times 10^{3}$) and isotropic thermal parameters $\left(\AA^{2}\right)$ with estimated standard deviations in parentheses

$$
\text { For all } \mathrm{H} \text { atoms } B=5.0 \AA^{2} \text {. }
$$

$\mathrm{Co}(1)$	396.6 (3)	331.4 (7)	175.9 (8)	
$\mathrm{Co}(2)$	176.7 (2)	489.0 (7)	-206.6 (8)	
$\mathrm{Cl}(11)$	478.7 (4)	285.2 (12)	194.7 (15)	
$\mathrm{Cl}(12)$	381.4 (4)	128.4 (11)	308.2 (13)	
$\mathrm{Cl}(21)$	244.8 (4)	596.9 (11)	-217.8(14)	
$\mathrm{Cl}(22)$	162.9 (4)	318.5 (11)	-351.5 (14)	
$\mathrm{O}(1)$	407 (1)	512 (3)	74 (3)	$4 \cdot 1$ (8)
O(2)	325 (1)	638 (3)	72 (4)	$5 \cdot 3$ (9)
$\mathrm{N}(1)$	322 (1)	373 (4)	154 (4)	$3 \cdot 2$ (9)
$\mathrm{N}(2)$	259 (2)	436 (4)	271 (4)	3.5 (9)
$\mathrm{N}(3)$	246 (1)	370 (3)	11 (4)	1.7 (8)
$\mathrm{N}(11)$	364 (1)	274 (3)	-46 (4)	1.6 (8)
$\mathrm{N}(21)$	386 (1)	419 (3)	388 (4)	1.8 (8)
N(31)	150 (1)	444 (3)	-11(3)	$1 \cdot 6$ (8)
C(1)	293 (2)	346 (4)	25 (6)	$4 \cdot 0$ (12)
C(2)	306 (2)	414 (5)	279 (6)	$4 \cdot 1$ (13)
C(3)	230 (2)	396 (4)	134 (5)	$2 \cdot 6$ (11)
C(11)	318 (2)	289 (5)	-96 (6)	$4 \cdot 7$ (13)
C(12)	290 (2)	250 (4)	-242 (5)	3.4 (12)
C(13)	320 (2)	208 (5)	-344 (5)	$4 \cdot 5$ (13)
C(14)	371 (2)	180 (4)	-307 (5)	$3 \cdot 0$ (12)
C(15)	386 (2)	224 (4)	-154 (5)	$3 \cdot 1$ (11)
C(21)	342 (2)	451 (4)	418 (5)	2.9 (11)
C(22)	329 (2)	503 (4)	539 (5)	$2 \cdot 5$ (11)
C(23)	366 (2)	538 (4)	668 (6)	$4 \cdot 2$ (12)
C(24)	411 (2)	511 (5)	637 (6)	4.5 (12)
C(25)	420 (2)	462 (4)	507 (5)	2.9 (11)
C(31)	178 (2)	413 (4)	130 (5)	1.3 (9)
C(32)	160 (2)	381 (4)	260 (5)	1.8 (9)
C(33)	110 (2)	373 (4)	244 (5)	$3 \cdot 5$ (12)
C(34)	79 (2)	405 (4)	109 (5)	$3 \cdot 1$ (12)
C(35)	102 (2)	445 (5)	-14 (6)	$4 \cdot 2$ (12)
H(12)	253	244	-268	
H(13)	310	194	-460	
H(14)	397	148	-369	
H(15)	418	218	-68	
H(22)	292	504	537	
H(23)	360	580	765	
H(24)	444	516	714	
H(25)	456	469	483	
H(32)	184	373	369	
H(33)	91	338	326	
H(34)	42	404	89	
H(35)	83	469	-113	

based on all 708 reflexions was 0.108 and R^{\prime} $\left[=\left(\sum w \Delta^{2} / \sum w\left|F_{o}\right|^{2}\right)^{1 / 2}\right]$ was $0 \cdot 138$. Atomic coordinates and isotropic thermal parameters for the lighter atoms are given in Table 1.*

> * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33303 (6 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH 1 INZ, England.

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with estimated standard deviations in parentheses

$\mathrm{Co}(1)-\mathrm{Cl}(11)$	$2.23(1)$	$\mathrm{Co}(1)-\mathrm{Cl}(12)$	$2.55(1)$
$\mathrm{Co}(1)-\mathrm{O}(1)$	$2 \cdot 19(3)$	$\mathrm{Co}(1)-\mathrm{N}(11)$	$2.07(3)$
$\mathrm{Co}(1)-\mathrm{N}(1)$	$2.03(4)$	$\mathrm{Co}(1)-\mathrm{N}(21)$	$2.12(3)$
$\mathrm{Co}(2)-\mathrm{Cl}(12)$	$2.25(1)$	$\mathrm{Co}(2)-\mathrm{Cl}(21)$	$2.19(1)$
$\mathrm{Co}(2)-\mathrm{Cl}(22)$	$2.23(1)$	$\mathrm{Co}(2)-\mathrm{N}(31)$	$1.99(3)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.29(5)$	$\mathrm{N}(1)-\mathrm{C}(2)$	$1.29(5)$
$\mathrm{C}(2)-\mathrm{N}(2)$	$1.28(5)$	$\mathrm{N}(2)-\mathrm{C}(3)$	$1.38(4)$
$\mathrm{C}(3)-\mathrm{N}(3)$	$1.24(5)$	$\mathrm{N}(3)-\mathrm{C}(1)$	$1.27(5)$
$\mathrm{N}(11)-\mathrm{C}(11)$	$1.26(5)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.42(6)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.38(6)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.38(5)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.40(5)$	$\mathrm{C}(15)-\mathrm{N}(11)$	$1.29(5)$
$\mathrm{N}(21)-\mathrm{C}(21)$	$1.31(5)$	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.28(5)$
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.42(5)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.32(6)$
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.30(5)$	$\mathrm{C}(25)-\mathrm{N}(21)$	$1.34(4)$
$\mathrm{N}(31)-\mathrm{C}(31)$	$1.36(4)$	$\mathrm{C}(31)-\mathrm{C}(32)$	$1.33(5)$
$\mathrm{C}(32)-\mathrm{C}(33)$	$1.35(5)$	$\mathrm{C}(33)-\mathrm{C}(34)$	$1.37(5)$
$\mathrm{C}(34)-\mathrm{C}(35)$	$1.38(6)$	$\mathrm{C}(35)-\mathrm{N}(31)$	$1.30(5)$
$\mathrm{C}(1)-\mathrm{C}(11)$	$1.46(6)$	$\mathrm{C}(2)-\mathrm{C}(21)$	$1.47(5)$
$\mathrm{C}(3)-\mathrm{C}(31)$	$1.41(5)$		

Discussion

Bond distances and angles are given in Table 2. Fig. 1 shows a perspective drawing of the molecule and the labelling of the atoms (Johnson, 1965). Fig. 2 shows the packing viewed down \mathbf{c}.

Fig. 1. Perspective drawing of the molecule showing the labelling of the atoms. Intermolecular contacts to $\mathrm{O}(2)$ are shown and are numbered according to details given in Table 4. Anisotropic thermal ellipsoids are scaled to include 35% probability.

Table 2 (cont.)

$\mathrm{Cl}(11)-\mathrm{Co}(1)-\mathrm{Cl}(12)$	89.9 (5)	$\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{N}(11)$	$87 \cdot 6$ (13)	$\mathrm{Cl}(12)-\mathrm{Co}(1)-\mathrm{N}(21)$	$87 \cdot 2$ (10)
$\mathrm{Cl}(11)-\mathrm{Co}(1)-\mathrm{N}(11)$	105.0 (12)	$\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{N}(21)$	89.2 (13)	$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(11)$	$74 \cdot 1$ (16)
$\mathrm{Cl}(11)-\mathrm{Co}(1)-\mathrm{N}(21)$	107.3 (13)	$\mathrm{Cl}(12)-\mathrm{Co}(1)-\mathrm{O}(1)$	$176 \cdot 2$ (9)	$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(21)$	73.6 (16)
$\mathrm{Cl}(11)-\mathrm{Co}(1)-\mathrm{N}(1)$	179.0 (12)	$\mathrm{Cl}(12)-\mathrm{Co}(1)-\mathrm{N}(1)$	$90 \cdot 6$ (12)	$\mathrm{N}(11)-\mathrm{Co}(1)-\mathrm{N}(21)$	147.7 (14)
$\mathrm{Cl}(11)-\mathrm{Co}(1)-\mathrm{O}(1)$	92.4 (9)	$\mathrm{Cl}(12)-\mathrm{Co}(1)-\mathrm{N}(11)$	94.7 (10)	$\mathrm{Co}(1)-\mathrm{Cl}(12)-\mathrm{Co}(2 \mathrm{ii})$	124.1 (4)
$\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{N}(1)$	87.1 (14)				
$\mathrm{Cl}(21)-\mathrm{Co}(2)-\mathrm{Cl}(22)$	119.0 (4)	$\mathrm{Cl}(22)-\mathrm{Co}(2)-\mathrm{N}(31)$	$102 \cdot 9$ (5)	$\mathrm{Cl}(22)-\mathrm{Co}(2)-\mathrm{Cl}\left(12^{\text {i }}\right.$)	$107 \cdot 5$ (4)
$\mathrm{Cl}(21)-\mathrm{Co}(2)-\mathrm{N}(31)$	125.4 (3)	$\mathrm{Cl}(21)-\mathrm{Co}(2)-\mathrm{Cl}\left(12^{1}\right)$	98.6 (1)	$\mathrm{Cl}\left(12^{\text {i }}\right)-\mathrm{Co}(2)-\mathrm{N}(31)$	$100 \cdot 5$ (3)
$\mathrm{Co}(1)-\mathrm{N}(1)-\mathrm{C}(1)$	118 (4)	$\mathrm{Co}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	117 (4)	$\mathrm{Co}(2)-\mathrm{N}(31)-\mathrm{C}(31)$	127 (2)
$\mathrm{Co}(1)-\mathrm{N}(11)-\mathrm{C}(11)$	121 (4)	$\mathrm{Co}(1)-\mathrm{N}(11)-\mathrm{C}(15)$	129 (3)	$\mathrm{Co}(2)-\mathrm{N}(31)-\mathrm{C}(35)$	118 (3)
$\mathrm{Co}(1)-\mathrm{N}(21)-\mathrm{C}(21)$	123 (3)	$\mathrm{Co}(1)-\mathrm{N}(21)-\mathrm{C}(25)$	131 (3)		
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	125 (5)	$\mathrm{C}(21)-\mathrm{N}(21)-\mathrm{C}(25)$	106 (4)	$\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	121 (6)
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(3)$	113 (5)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	120 (5)	$\mathrm{C}(2)-\mathrm{C}(21)-\mathrm{C}(22)$	124 (5)
$\mathrm{C}(3)-\mathrm{N}(3)-\mathrm{C}(1)$	116 (5)	C(23)-C(24)-C(25)	124 (5)	$\mathrm{C}(3)-\mathrm{C}(31)-\mathrm{C}(32)$	115 (4)
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{N}(1)$	117 (6)	$\mathrm{C}(31)-\mathrm{N}(31)-\mathrm{C}(35)$	115 (4)	$\mathrm{N}(11)-\mathrm{C}(11)-\mathrm{C}(12)$	128 (6)
$\mathrm{C}(21)-\mathrm{C}(2)-\mathrm{N}(1)$	122 (6)	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	115 (4)	C(12)-C(13)-C(14)	126 (5)
$\mathrm{C}(31)-\mathrm{C}(3)-\mathrm{N}(2)$	113 (4)	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	117 (5)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{N}(11)$	137 (5)
$\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{N}(11)$	110 (5)	$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(2)$	118 (5)	$\mathrm{N}(21)-\mathrm{C}(21)-\mathrm{C}(22)$	131 (5)
$\mathrm{C}(2)-\mathrm{C}(21)-\mathrm{N}(21)$	104 (5)	$N(2)-C(3)-N(3)$	126 (5)	C(22)-C(23)-C(24)	110 (5)
$\mathrm{C}(3)-\mathrm{C}(31)-\mathrm{N}(31)$	116 (4)	$\mathrm{N}(3)-\mathrm{C}(1)-\mathrm{N}(1)$	118 (5)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{N}(21)$	129 (5)
$\mathrm{C}(11)-\mathrm{N}(11)-\mathrm{C}(15)$	110 (5)	$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{N}(3)$	125 (6)	$\mathrm{N}(31)-\mathrm{C}(31)-\mathrm{C}(32)$	127 (4)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	112 (5)	$\mathrm{C}(21)-\mathrm{C}(2)-\mathrm{N}(2)$	119 (6)	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	122 (5)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	105 (4)	$\mathrm{C}(31)-\mathrm{C}(3)-\mathrm{N}(3)$	119 (5)	$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{N}(31)$	124 (5)

The tpt functions as both a tridentate and monodentate ligand to $\mathrm{Co}(1)$ and $\mathrm{Co}(2)$ respectively. One triazine and two pyridyl N atoms of the ligand coordinate to $\mathrm{Co}(1)$ [mean $\mathrm{Co}-\mathrm{N} 2.07$ (3) \AA] and a distorted octahedron is completed by $\mathrm{Cl}(11)$ and $\mathrm{Cl}(12)$ $(\mathrm{Co}-\mathrm{Cl} 2.23$ and $2.55 \AA$) and a water molecule $[\mathrm{Co}-\mathrm{O}(1) 2 \cdot 19 \AA] \mathrm{Co}(2)$ is surrounded by three Cl atoms [mean $\mathrm{Co}-\mathrm{Cl} 2.22$ (1) \AA] and the remaining pyridyl N atom of the ligand $[\mathrm{Co}-\mathrm{N}(31) 1.99 \AA]$ forming a distorted tetrahedron. $\mathrm{Cl}(12)$ bridges $\mathrm{Co}(1)$ and $\mathrm{Co}(2)$ of adjacent molecules $[\mathrm{Co}(1)-\mathrm{Cl}(12)-$ $\mathrm{Co}(2) 124.1(4)^{\circ} \mathrm{J}$ to form molecular chains parallel to [010]. It is of interest that such a bridge exists in the presence of the uncoordinated water molecule $\mathrm{O}(2)$.

Fig. 2. Molecular packing in the crystal.

We had suggested (Vagg, Warrener \& Watton, 1969) that in this type of compound the ligand may be acting as both tridentate and bidentate to the two metal atoms. Durham, Frost \& Hart (1969) have argued that coordination of tpt to more than one metal atom would not be expected on electronic and steric grounds. The ligand functions as an approximately planar tridentate to $\mathrm{Co}(1)$ (Table 3, plane 1). Distortions caused by this coordination are similar to those described in the Ni complex (Barclay, Vagg \& Watton, 1977a). The third pyridyl ring is rotated 38° around the bond to the triazine centre. Steric interaction of $\mathrm{H}(12)$ with $\mathrm{Co}(2)$ would not allow the ligand to act as a planar bidentate to that metal; however, the close $\mathrm{N}(3)-\mathrm{Co}(2)$ distance of 2.75 (4) \AA indicates a weak interaction between these atoms. This is evidenced also by the angular distortions in the coordination sphere of $\mathrm{Co}(2)$ towards a trigonal bipyramid (Table 2 and Fig. 3).

Other distortions in the ligand are apparent. The molecule is bent along the $\mathrm{N}(1)-\mathrm{C}(34)$ direction (Fig. 2) such that the $C(31)-C(34)$ direction intersects at 15° the tridentate plane (Table 3, plane 1). This effect is particularly evident in the non-planarity of the central s-triazine ring (Table 3, plane 2). The ring adopts a distinct chair conformation; the planes defined by $\mathrm{N}(1), \mathrm{C}(1)$ and $\mathrm{C}(2)$, and $\mathrm{N}(2), \mathrm{N}(3)$ and $\mathrm{C}(3)$ intersect that defined by $\mathrm{C}(1), \mathrm{C}(2), \mathrm{N}(2)$ and $\mathrm{N}(3)$ (Table 3, planes 3,4 and 5) at 5 and 17° respectively. The three pyridyl rings show no significant deviation from planarity (Table 3, planes 6,7 and 8).

Table 3. Least-squares planes and their equations given by $l^{\prime}+m Y^{\prime}+n Z^{\prime}-p=0$, where X^{\prime}, Y^{\prime} and Z^{\prime} are orthogonal coordinates related to the atomic coordinates X, Y and Z by $X^{\prime}=X \sin \beta, Y^{\prime}=Y$ and $Z^{\prime}=Z+\cos \beta$
Deviations (\AA) of atoms from the planes are given in square brackets. Values in parentheses are standard deviations calculated solely from errors in atomic coordinates.

		m		p
Plane 1: $\mathrm{Co}(1), \mathrm{N}(1)-(3), \mathrm{C}(1)-(3), \mathrm{N}(11), \mathrm{N}(21), \mathrm{C}(11)-(15), \mathrm{C}(21)-(25)$	$0 \cdot 1102$	0.9069	-0.4067	4.6218
$\begin{aligned} & {[\mathrm{Co}(1)-0.12 ; \mathrm{N}(1) 0.02 ; \mathrm{N}(2), \mathrm{N}(11)-0.06 ; \mathrm{N}(3), \mathrm{C}(13) 0.13 ; \mathrm{N}(21), \mathrm{C}(21)-0.05 ; \mathrm{C}(1) 0.07 ; \mathrm{C}(2)-0.09 ; \mathrm{C}(3)-0.11 ;} \\ & \mathrm{C}(11), \mathrm{C}(12) 0.04 ; \mathrm{C}(14)-0.04 ; \mathrm{C}(15)-0.08 ; \mathrm{C}(22)-0.02 ; \mathrm{C}(23) 0.05 ; \mathrm{C}(24) 0.09 ; \mathrm{C}(25) 0.11 ; \mathrm{C}(31)-0.17 ; \mathrm{C}(34)-0.64] \end{aligned}$				
Plane 2: $\mathrm{C}(1)-(3), \mathrm{N}(1)-(3)$	0. 1001	0.9368	-0.3351	4.6729
[$\mathrm{N}(1)-0.001$ (35); $\mathrm{N}(2) 0.049$ (35); $\mathrm{N}(3) 0.067(30) ; \mathrm{C}(1)-0.024$ (43); $\mathrm{C}(2)-0.011$ (45); $\mathrm{C}(3)-0.080$ (41); $\mathrm{Co}(1)-0.186$ (7)]				
Plane 3: $\mathrm{N}(1), \mathrm{C}(1), \mathrm{C}(2)$	0.0708	0.9388	-0.3370	4.4306
Plane 4: $\mathrm{N}(2), \mathrm{N}(3), \mathrm{C}(3)$	-0.1309	0.9467	-0.2942	3.2367
Plane 5: $\mathrm{N}(2), \mathrm{N}(3), \mathrm{C}(1), \mathrm{C}(2)$	0.158	0.927	-0.3397	5.0773
[C(1) -0.008 (43); $\mathrm{C}(2) 0.008$ (45); $\mathrm{N}(2)-0.008$ (35); $\mathrm{N}(3) 0.008$ (30); $\mathrm{N}(1) 0.052$ (35); $\mathrm{C}(3)-0.172$ (41)]				
Plane 6: $\mathrm{N}(11), \mathrm{C}(11)-(15)$	$0 \cdot 1708$	0.9086	-0.3811	5.0978
Plane 7: $\mathrm{N}(21), \mathrm{C}(21)-(25)$	0.0536	0.8953	-0.4421	3.9178
[$\mathrm{N}(21)-0.038$ (30); $\mathrm{C}(21) 0.014$ (42); C(22) 0.010 (40); $\mathrm{C}(23)-0.011$ (44); C(24)-0.015 (46); C(25) 0.040 (42); Co(1) -0.049 (7)]				
Plane 8: N (31), $\mathrm{C}(31)-(35)$	-0.0036	0.9507	0.3101	4.3796
[$\mathrm{N}(31)-0.028$ (29); C(31) -0.009 (36); C(32) 0.034 (38); C(33)-0.024 (44); C(34)-0.012 (43); C(35) 0.040 (45); Co(2) --0.126 (7)]				
Plane 9: $\mathrm{N}(1), \mathrm{N}(2), \mathrm{C}(1), \mathrm{C}(2)$	0.1241	0.9298	-0.3466	4.8296
$[\mathrm{N}(1) 0.019$ (35); $\mathrm{N}(2) 0.009$ (35); $\mathrm{C}(1)-0.009$ (43); $\mathrm{C}(2)-0.018$ (45); $\mathrm{N}(3) 0.049$ (30); $\mathrm{C}(3)-0.123$ (41)]				
Plane 10: $\mathrm{O}(2), \mathrm{N}(1), \mathrm{C}(2)$	0.9452	0.0556	0.3216	8.2564

Fig. 3. The coordination sphere of $\mathrm{Co}(2)$.

Table 4. Close intermolecular contacts ((\AA) to the water molecule $\mathbf{O}(2)$

Van der Waals contact distances (Handbook of Chemistry and Physics, 1974) are given in parentheses. Numbered interactions are shown in Fig. 1.
Interaction
Atom at

1	$\mathrm{~N}(1)$	(x, y, z)	$2.97(3 \cdot 25)$
2	$\mathrm{C}(2)$	(x, y, z)	$3 \cdot 11(3.25)$
3	$\mathrm{~N}(3)$	$\left(\frac{1}{2}-x, \frac{1}{2}+y, 1-z\right)$	$3 \cdot 17(3.25)$
4	$\mathrm{O}(1)$	(x, y, z)	$2.59(2 \cdot 80)$
5	$\mathrm{Cl}(22)$	$\left(\frac{1}{2}-x, \frac{1}{2}+y, 1-z\right)$	$3.09(3.20)$
6	$\mathrm{Cl}(21)$	(x, y, z)	$3.06(3.20)$

The uncoordinated water molecule $O(2)$ has close intermolecular contacts with $\mathrm{O}(1), \mathrm{Cl}(21), \mathrm{Cl}\left(22^{i}\right)$, $\mathrm{N}(1), \mathrm{C}(2)$ and $\mathrm{N}\left(3^{\mathrm{i}}\right)$ (Fig. 1 and Table 4). Of particular interest is the close contact [2.95 (4) \AA] of $\mathrm{O}(2)$ with the $\mathrm{N}(1)-\mathrm{C}(2)$ bond of the triazine ring. The water molecule sits directly above this bond (Table 3, planes 9 and 10 intersect at 87°), and is some $0.3 \AA$ nearer than the van der Waals contact distance (Handbook of Chemistry and Physics, 1974).

It has been demonstrated that molecular water will add to the $\mathrm{C}-\mathrm{N}$ bond of coordinated N heterocycles to form covalent hydrate species (Gillard \& Williams,
1977). We have reported (Johnston, Vagg \& Watton, 1978) that in some $\mathrm{Co}^{\text {II }}$ complexes of s-triazine there is evidence for a strong interaction between water and the coordinated base. The high sensitivity of s-triazine towards attack by water (Grundmann \& Kreutzberger, 1954), the observed hydrolytic cleavage of part of the central triazine residue of metal complexes of tpt (Lerner \& Lippard, 1976), and the formation of a covalent hydrate of s-triazine in acid solutions (Korolev, Mal'tseva \& Andronova, 1975) are known. The structure of the unstable compound described here suggests that hydrolytic attack occurs at one of the central coordinated $\mathrm{C}-\mathrm{N}$ bonds of the s-triazine residue in this complexed form.

References

Barclay, G. A., Vagg, R. S. \& Watton, E. C. (1977a). Acta Cryst. B33, 3487-3491.
Barclay, G. A., Vagg, R. S. \& Watton, E. C. (1977b). Acta Cryst. B33, 3777-3781.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
Durham, D. A., Frost, G. H. \& Hart, F. A. (1969). J. Inorg. Nucl. Chem. 31, 571-574.
Gillard, R. D. \& Williams, P. A. (1977). Transition Met. Chem. 2, 14-18.
Grundmann, C. \& Kreutzberger, A. (1954). J. Am. Chem. Soc. 76, 5646-5650.
Handbook of Chemistry and Physics (1974). 55th ed., p. D157. Cleveland, Ohio: Chemical Rubber Company.

International Tables for X-ray Crystallography (1962). Vol. III, pp. 202-205. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794, revised 1971. Oak Ridge National Laboratory, Tennessee.
Johnston, R. D., Vagg, R. S. \& Watton, E. C. (1978). Inorg. Chim. Acta, 26, 103-106.
Korolev, B. A., Mal'tseva, M. A. \& Andronova, N. A. (1975). Zh. Obshch. Khim. 45, 234-235.

Lerner, E. I. \& Lippard, S. J. (1976). J. Am. Chem. Soc. 98, 5397-5398.
Vagg, R. S., Warrener, R. N. \& Watton, E. C. (1967). Aust.J. Chem. 20, 1841-1857.
Vagg, R. S., Warrener, R. N. \& Watton, E. C. (1969). Aust.J. Chem. 22, 141-152.

